

Development of X-ray Focusing Mirrors onboard the eXTP Mission

Yanji Yang

Behalf of eXTP Optics Collaborative Team

14th Nov. 2024

11-15 Nov. 2024, AXRO2024, Prague, Czech

eXTP: enhanced X-ray Timing and Polarimetry

Important Sciences

- Extreme density, gravity, magnetism
- > Neutron stars, black holes, etc

Cutting-edge technology

- > Spectral, polarization, timing, imaging
- Large eff. Area (~2700 cm²@6 keV)
- High spec. resol.(<180 eV@6 keV)</p>

Payload	Configuration	Eff. area (m²)	Timing res. (μs)
Spectroscopy Focusing Array (SFA)	6 telescopes	0.6 m²@1-2 keV	10
Polarimetry Focusing Array (PFA)	3 telescopes	300 cm²@3 keV	10

Consolidated in Phase B

Supported through *eXTP Major Background Study project* by CAS.

> 2019.02 The 2nd eXTP Consortium meeting

& Phase B technical kick-off in Beijing.

- > 2022.01 Satellite/Chinese payloads conceptual design review.
- > 2022.06 Selection for the China Space Science Plan (SPP-3).
 - Organized by CAS with support of a international review team.
 - eXTP is highly recommended with perspective adoption around the end of 2023.
- > 2023.03 eXTP Major Background Study project under evaluation
 - Technical part successfully completed.
 - Budget/programmatic part completed.

eXTP Mission Overview

Parameter	Value	
Orbit	Apogee>100000km, perigee 5000km, Earth's highly elliptical orbit.	
inclination	28°	
Pointing	3-axis stabilized, < 3" (3σ)	
Launch	LM3B, from XiChang	
Launch mass	~4000 kg	
Telemetry	1.7 Tb/2 day (Ku-band)	
Mission duration	5 years (goal 8 years)	
Launch date	~ Jan. 2030	

Collaborative group of X-ray Focusing Mirror

- General technical unit
- Structural and thermal design, testing and assembly of the mirror shells

• Development of the mandrels and mirror shells

- Optical design, vibration and thermal testing,
- Development of X-ray baffle, rear spider and electronic deflector

The Development Laboratory

> 1000m² clean room located at south of Harbin City with:

- Diamond turning machine
- Dedicated metrology room & instruments
- Polishing (super polishing & figuring)
- Gold coating chamber
- Electro-forming bath
- Mirror separation stand & mandrel storage room
- Mirror inspection & integration

Technical Approach

Electroless Plating

- The surface of the mandrel is plated electroless with nickel-phosphorus alloy.
- The thickness is controlled at ~130 µm, uniformly and without pitting.
- > 15 pre-treatment steps
 before the plating
- ≻ 10-15µm/h

Mandrel after the electroless plating

Using natural diamond turning, the surface accuracy is better than 10". The roughness is about 5nm RMS after turning.

- Use asphalt of optical grade to suppress mid-frequency noise.
- ➤ use damping cloth to suppress high-frequency noise.

Au Coating with Magnetron Sputtering

100 nm Au coating as the reflective layer of X-ray

Electro-forming

- The 100nm gold layer cannot keep itself from deformation, and a nickel layer needs to be electroformed on its surface.
- The thickness of electroformed nickel on mandrel with different radii is different, which is generally characterized by the thickness-to-radius ratio (t/R ratio).
- the t/R ratio is getting smaller and smaller during the development, which brings us a challenge to try to keep the angular resolution under 30 arcsecs.

圆形陪片 (≈0.21 MPa)

Releasing from the mandrel

- The difference in thermal expansion coefficient between the nickel mirror shell and the aluminum mandrel is used to separate the mirror shell from the mandrel.
- The entire releasing process is carried out in the chamber, and It needs to remain a low humidity environment during the process, by using the high-purity nitrogen.

- > The eXTP focusing mirror has the smallest t/R ratio among all Wolter I-type goldcoated nicel focusing mirror, which is 1.75×10^{-3} , about half smaller than XMM and eROSITA (3×10^{-3}), and smaller than IXPE (2×10^{-3}).
- The eXTP1# shell is the largest layer, with an aperture of 480mm, a height of 600mm, and a wall thickness of 0.41mm (5 sheets of 70g A4 paper). It is the most easily deformed of all eXTP focusing mirror shells.

Integration Facility

Contamination Control

- Wolter I X-ray focusing mirrors are very sensitive to particulate contamination (complete failure at 10,000 ppm).
- The particulate contamination was about 29.5 ppm from the time the EP satellite replaced the FXT focusing mirror to before the satellite transport to the launch site;
- The particulate contamination during the development of the flight spare focusing mirror for the EP satellite was about 70.9 ppm (FXT-QM from Media Lario was 40.1 ppm);
- During the in-orbit calibration of the EP satellite, the effective area did not decay (0.96~1.01), proving that the contamination controll is effective.
 Molecular Contamination (<1×10⁻⁷ g/cm²)

Particulate Contamination < 300ppm)</p>

PAC

PF0

QCM

- Structural model (23 mirror shells), get the situation of the vibration test on the SC platform.
- Thermal model (32 mirror shells and 22 dummy), verify the thermal control of the mirror module.
- Qualification model (6 X-ray shells and 48 shells), the angular resolution is 114 arcsecs in Xray test.
- Flight spare model (54 X-ray shells), the angular resolution is 58 arcsecs.

Development of the eXTP Prototype

$$>$$
 HPD_{X-ray} = $\sqrt{HPD_{opt}^2 - HPD_{dif}^2}$

eXTP mirror shell No.21-7, Testing result in visible lights is 33.95", HPD affected by diffraction is 21.6", HPD in X-ray test is 26.9" (Predicted value is 26.2")

	UDD ///	M00///	Scattering
Energy/kev	приј	W90/	ratio%
С-К: 0.28	25.7±0.3	166.1±5.7	4.3
Al-K: 1.49	26.9±0.3	177.3±8.0	6.1
Ag-L: 2.98	26.9±0.5	185.6±11.6	8.1
Ti-K: 4.51	28.8±0.6	204.1±8.3	9.4
Cr-K: 5.4	28.9±0.7	204.8±14.0	8.9
Fe-K: 6.04	26.4±0.8	226.1±21.6	13.3

- EP mirror shell No.31, Testing result in visible lights is 32.02", HPD affected by diffraction is 29.4", Predicted value is ab. 10".
- EP mirror shell No.32, Testing result in visible lights is 32.02", HPD affected by diffraction is 30.2", Predicted value is ab. 10".

- With the support of eXTP major background study and the development of EP-FXT, a clean laboratory for focusing mirrors has been established, with a total of more than 20 sets of facilities and testing equipment.
- The task of achieving an angular resolution of focusing mirror shells better than 30" and the mirror module better than 60" has been completed successfully.
- We will continue to explore how to reduce the weight of focusing mirrors while improving angular resolution, for related topics such as CATCH and millisecond pulsars detection.