Line Emission Mapper

MLEM

X-ray Astrophysics Probe concept proposed to NASA, November 2023

SAO / NASA GSFC / Lockheed-Martin

Maxim Markevitch (NASA GSFC), AXRO Workshop, 2023 December 6

TES calorimeter array, NASA Goddard (building upon Athena XIFU)

- □ 30'×30' field of view, 118×118 array of 15" pixels (290µm pitch)
- □ 2 eV resolution; 1 eV in the 5'×5' central region
- Cooled to 40 mK (coolers by Lockheed-Martin, Goddard)

Spacecraft, Lockheed-Martin

- Sun-Earth L1 orbit (can look at Earth)
- minimum 5 yr lifetime

Si shell grazing-incidence mirror

NASA Goddard (Will Zhang)

- □ 1600 cm² effective at E=0.5 keV
- 0.2–2 keV band
- 🖵 F = 4m
- □ 13" resolution (HPD; incl. pixelization)

Status of technology

Prototype detector energy resolution results

- single pixels (as Athena XIFU, etc.) in the inner 5'x5' region
- rest of detector: "hydra" pixels –
 4 absorbers (15" pixels) connected to
 1 TES reduces number of readouts
- □ already meets LEM requirements

Angular resolution results, mirror subset (5 shell pairs)

- LEM mirror is similar to STAR-X
- **C** exceeds LEM requirements

LEM vs current and future imaging spectrometers

		LEM	XRISM Resolve	ATHENA XIFU	HUBS
Energy band, keV		0.2-2	0.4-12	0.2–12	0.2-2
Effective area, (cm ²	0.5 keV 6 keV	1600 0	50 300	6000 2000	500 0
Field of view		30'	3'	4'	60'
Grasp, 10 ⁴ cm ² arcmin ²		140	0.05	8	180
Angular resolution		15"	75''	5''	60''
Spectral resolution (FWHM)		1 eV central 5x5' 2 eV rest of FOV	5 eV	3 eV	2 eV
Detector size (equiv. pixels)		118 x 118	6 x 6	40 x 40	60 x 60

Science-driven architecture

Two broad frontiers of X-ray astrophysics:

U the energetic Universe

- measure Doppler shifts of E=6 keV Fe line
 - needs a large focal length (small grazing angles) = small FOV for a microcalorimeter of a feasible size

galaxy evolution

- map extended sources whose signal is a forest of E~1 keV lines
 - use a short (fast) telescope = large FOV
 - trade high-energy sensitivity for better energy resolution using a microcalorimeter optimized for narrower band

Science-driven architecture

Two broad frontiers of X-ray astrophysics:

U the energetic Universe

measure Doppler shifts of E=6 keV Fe line

Athena XIFU

needs a large focal length (small grazing angles) = small FOV for a microcalorimeter of a feasible size

galaxy evolution

- map extended sources whose signal is a forest of E~1 keV lines
 - use a short (fast) telescope = large FOV

LEM

trade high-energy sensitivity for better energy resolution using a microcalorimeter optimized for narrower band

LEM data cube

LEM science – Cosmic Ecosystems

- Map extended gas halos around galaxies the Circumgalactic Medium (CGM) – to determine the physical drivers of galaxy evolution
 - including CGM halo of our own Milky Way
- Detect and map metals in the Cosmic Web to probe cosmological history of galactic feedback
- Map star-forming regions, superbubbles (including the Local Hot Bubble), SNRs of all ages, Fermi/eROSITA Bubbles, Galactic Center chimneys – the Milky Way ecosystem

Simulated Milky Way mass galaxy in X-rays

How to detect emission from galactic halos?

Signal from galactic halos overwhelmed by the much brighter emission of the Milky Way's own halo

Need ~eV spectral resolution to disentangle the redshifted halo signal from the MW foreground

How to detect emission from galactic halos?

Simulated Milky Way-like galaxy at z=0.01 (LEM 1 Ms exposure)

Left: CCD resolution (70 eV) image – cannot see the extended halo, because the **MW foreground dominates**

Middle, right: LEM images in 2 eV energy bins centered on the O VIII and Fe XVII lines. Most of the MW foreground is removed, revealing the full extent of the hot halo and the AGN bubbles

Detecting metals in the Cosmic Web

Cosmic Web is the ultimate repository of everything expelled from galaxies

- Metal content constrains models of feedback
- IGM emission is extremely faint, overpowered by MW
 - Need grasp to collect photons
 - Need spectral resolution to separate
 IGM signal from MW
 foreground

Detecting metals in the Cosmic Web

LEM spectrum, 2 Ms on-filament region, model B (moderate feedback)

□ filament selected from optical surveys at an optimal redshift

Cosmic Web is the ultimate repository of everything expelled from galaxies

- Metal content constrains models of feedback
- IGM emission is extremely faint, overpowered by MW
 - Need grasp to collect photons
 - Need spectral resolution to separate IGM signal from MW foreground

LEM All-Sky Survey

- First survey with 2 eV resolution
- 100s uniform depth (total exposure 16 Ms, only 10% of the mission)
 - **can do because of grasp!**
- Split in ~10 installments (timing studies, SWCX)
- Full, uniform 15" angular resolution
- inside view on a Milky Way mass galaxy

LEM All-Sky Survey

eROSITA bubble expansion velocity:

- □ use 1 eV inner array (a subset of the survey dataset), E=826 eV Fe line
- can detect ~300 km/s difference between expanding walls of southern bubble for 16x16 deg tiles (15 such tiles cover the bubble)

LEM Guest Observer program – 70% of mission

LEM

Jupiter, LEM 20 ks spectrum OV - OVIII + SWCX with LEM NVII OVIII CVI OVII Α X-ray counts / eV 002 CVI 20 ks exposure CVI NV CVI OVII OVII FeXXIV Fe, S, Si, Mg, Ne 0 OV - OVIII + Iogenic CX with LEM OVIII OVII B X-ray counts / eV 00 XMM OVI OVII EPIC pn OVII SXI (CCD) S VII - XVI 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 E, keV

- detect z=2-3 galaxy groups and protoclusters
- Earth magnetosphere (SWCX)
- map minerals on the Moon surface
- many more possible studies

Launch date: 2032