GRINTA

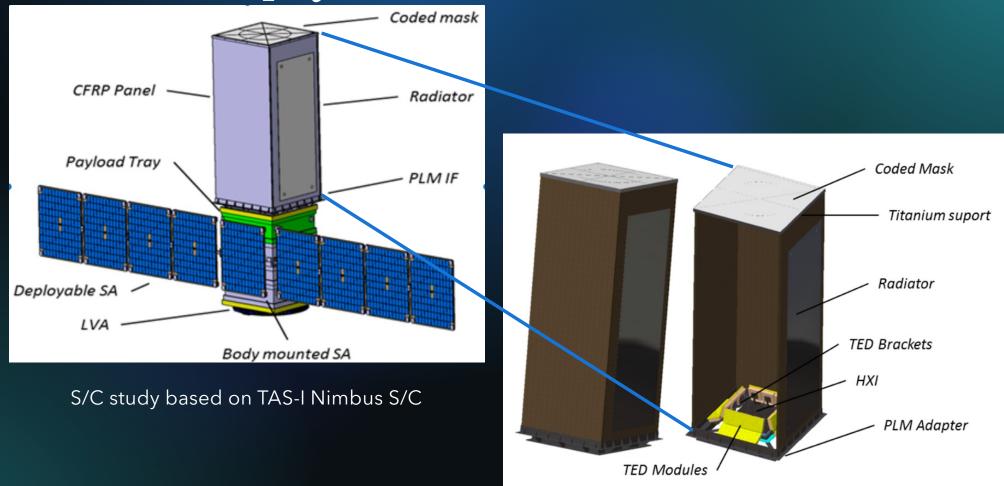
an explorer of the multimessenger and transient sky Lorenzo Natalucci on behalf of the GRINTA Consortium AXRO conference 2023, Prague 4-8 December 2023

The Consortium

GRINTA

17 European research laboratories, 47 researchers, 8 countries

Mission concept summary

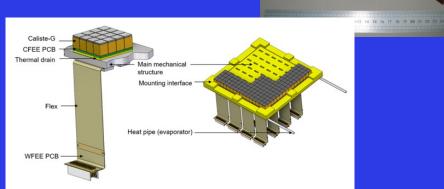


- Main goals: GRB & multimessenger, Surveys
- Launch: >~mid 2030's
- Orbit: LEO equatorial (<5deg)
- Rapid repointing, light S/C
- GRB detection:
 - Coverage ~8 sr FoV (0.02-10 MeV)
 - Followup: Coverage 400deg² FoV (5-200 keV)
- #GRBs: ~570/yr (of which ~90 SGRBs/yr)
- Localization:

•

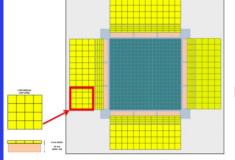
<10 deg @90% confidence at first detection, 30" after followup

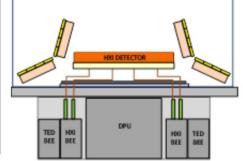
The S/C and payload module


The GRINTA payload

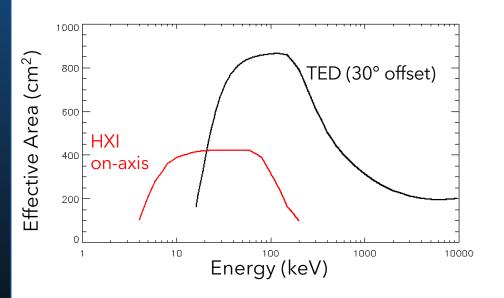
Hard X-ray Imager (HXI)

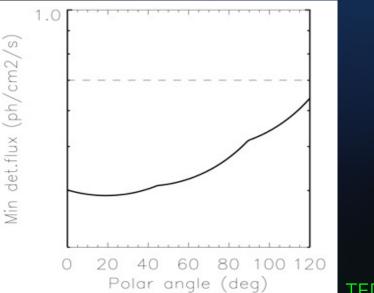
- Coded mask instrument (400 deg² FoV)
- Detection units based on Caliste modules (CdTe Schottky, already flight proven)
- Focal plane assembly has 16x16 modules, 900cm² detection area. Imaging pixel size = 1mm.

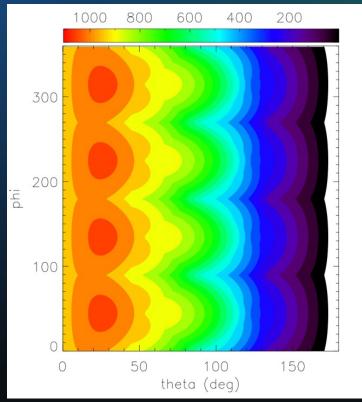



A set of Caliste modules. A version of them has been launched on Solar-Orbiter(TRL-9)

Transient Event detector (TED)


- 24 modules, each of 100cm² geometric area
- They are used on board to detect GRBs and other transients and send alerts to the DPU
- They also act as active AC system for the HXI detector plane
- Technology already flight proven, mainly on small-sats (e.g. GECAM, GRID, ...)


GRINTA performance summary


Characteristics	HXI Perfor-	TED Perfor-
	mances	mances
Energy Range	$5200\mathrm{keV}$	$20\mathrm{keV}{-}10\mathrm{MeV}$
Spectral Resolution	1 keV @	${\sim}25\%$ @60 keV
(FWHM)	$60\mathrm{keV}$	${\sim}10\%@500\mathrm{keV}$
Field of View	$29^{\circ}x29^{\circ}$ Total	$\sim 8 \mathrm{sr}$
	FoV	
Angular Resolution	3.8'	N/A
Source location accu-	30"	5°
racy (10σ)		
Sensitivity	Energy range ph/cm ² /s	$< 0.5 \mathrm{ph/cm^2/s}$
(5sigma, 10 ⁴ s)	$ \begin{array}{ c c c c c } 5-50 \ \mathrm{keV} & 6\times 10^{-4} \\ 50-200 \ \mathrm{keV} & 3\times 10^{-3} \end{array} $	in 50–300 $\rm keV$
	$5-200 \text{ keV}$ 3.5×10^{-3}	

TED sky monitoring

Source Type	Detections/Year
Short GRBs	90
Long GRBs	480
Magnetars	60
Galactic Transients	90

Exposed area as a function of polar angle

TED sensitivity compared to Fermi/GBM

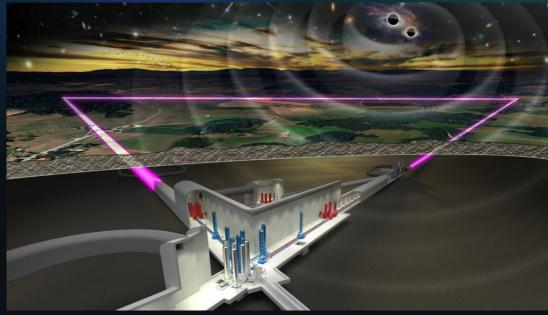
GRINTA in a nutshell

	· · · · · · · · · · · · · · · · · · ·
Key Science Goals	 Understand the physics of mergers responsible for emission of gravitational waves Probe the nature of jets and structure in gamma-ray bursts Understand the physical processes driving the high energy transient phenomena and clarify their relationship with multi-messenger sources Understand the physics of compact objects and characterize their populations (surveys)
Payloads	Two instruments:
	· Transient Event Detector (TED), 0.02 — 10 MeV, FOV ← 8 sr
	 Hard X-ray Imager (HXI), 5 - 200 keV, FOV ← 100sq.deg fully coded, 400sq.deg FWHM, source location accuracy ← 30"
Mission Profile	 Vega-C, Low Earth orbit, < 5deg inclination
	 Duration: 2-year (nominal) + 3 years (extended)
	 Communication links: equatorial GS, optional intersatellite relay link (e.g. Globalstar, Iridium) Optional cubesat (GIFTS) co-orbiting for all-sky coverage (not baselined - to be assessed in Phase 0)
Spacecraft	Study based on TAS-I NIMBUS platform:
	· 3-axis stabilized
	 Rapid repointing, slew time : 50°/min
	· Power : 490 W
	· Dry Mass : 289 kg
	· S-band/X-band (Malindi, Kourou)
Cost to ESA	ROM estimate marginally within ESA CaC, could be substantially reduced if S/C is already space qualified at the time of mission adoption

GRINTA Operational Concept

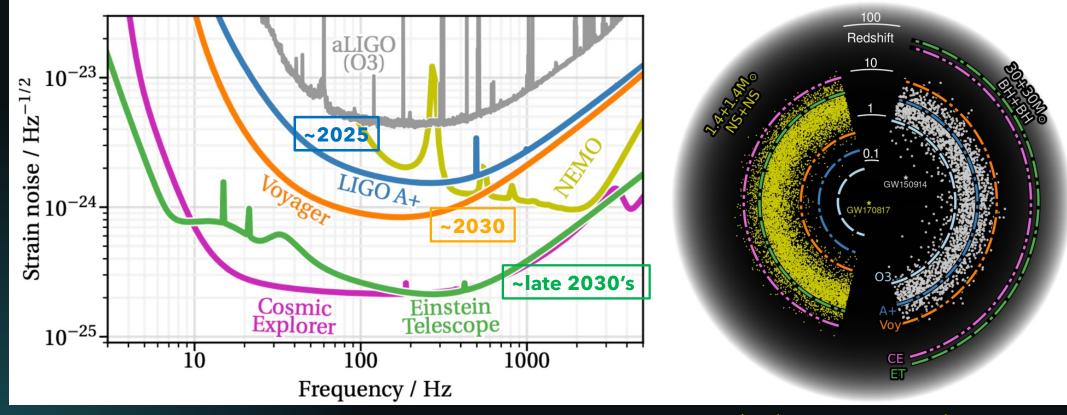
- Basic operational modes:
 - (a) Safe mode (b) Survey (c) Follow-up
- Fast slew towards the target $(50^{\circ} \text{ in } < 60^{"})$
- Follow-up triggered by TED localisation of an event or by external (ground or satellite) alert
- Re-orientable solar panels
- S/C communication via both GS and satellite constellations (necessary to reduce delays down to ~min timescale)

HE (>20 keV) missions scenario

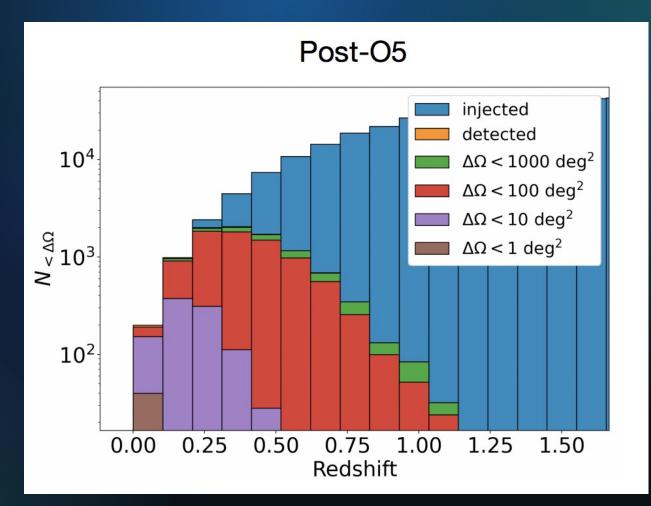

No hard X-ray missions with imaging capabilities like Swift and INTEGRAL

Joint GW/EM signal detection for GRINTA Possible scenarios

Post O5 (>2030)


3 LIGO Voyagers (two in the current position of the LIGO antennas in Livingston and Handford, and the third one in India) + Virgo (O5 sensitivity) + Kagra (O5 sensitivity).

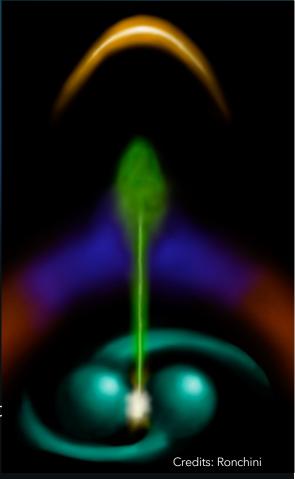
- Einstein Telescope (ET)
- Einstein Telescope + Cosmic Explorer (CE)



ET concept design

Planned GW detectors

Credits: https://cosmicexplorer.org/



Most GW detected events in the post-O5 scenario will have localization error < 100 deg² (ref. Ronchini+22)

GRINTA contribution to GRB science in the GWs era

TED will detect about 90 short GRBs per year

- Almost half will be detected by HXI in γ /X-ray (down to 5 keV)
 - → measure the source spectra probing the emission mechanims
- HXI sub-arcmin sky-localization will drive the multi-wavelenght followup by ground and identification of the host galaxy
 - → complete picture of the relativistic jet and interaction with the environment
- GW/GRB: post O5, ~10 detection per year in survey mode and another tens by follow-up of GW signals
- Evaluate the fraction of BNS able to produce a jet
- Jet structure by detecting off-axis GRBs (pointing GWs)
- Detect X-ray signature to identify the nature of the merger remnant
- Understand the role of NS-BH mergers as short GRB progenitor
- With 2+3 years mission → cosmology with H₀ at 1 percent level and test of modified gravity

Synergy with other facilities

- Provide accurate locations of the events to follow-up with IR/optical/UV telescopes. Measurements of redshifts by IR/optical followup of SGRBs will have impact on cosmology (H₀ measurements) and fundamental physics (e.g. theories of modified gravity)
- Followup with optical/UV to investigate the relative contribution of mergers and core-collapse SNae to the r-process (connection to cosmic-ray science, origin of heavy elements).
- Investigation of alerts generated by radio, optical and VHE (e.g. SKA, Vera Rubin, CTA), including subthreshold searches. Events from GRBs, TDEs, FRBs,...
- Search for HE neutrino counterparts in the error regions of neutrino telescopes: IceCube Gen2, KM3NET...
- Perform joint studies of the hard X-ray and TeV emission (e.g. blazar flares) with GRINTA and CTA
- Follow-up and localization of many astrophysical transients
- Investigation of HE unidentified sources for thousands of objects (e.g. sources already detected by INTEGRAL, Swift, Fermi, eRosita, ...)

Localization is the key!

Summary

- GRINTA is a natural evolution of the successful, currently operational missions: Fermi, INTEGRAL, Swift, with an innovative operational approach
- It represents an outstanding opportunity to complement the GW post-O5 and neutrino 2nd generation detectors with EM measurements in the 2030's.
- It will provide wide sky coverage in hard X-rays, currently the most effective choice for the detection and prompt localization of short GRBs from binary mergers at large distances
- The detection of tenths/hundreds of joint EM/GW events will provide breakthrough discoveries in fundamental physics, cosmology, relativistic jet formation and structure, gravity theories, etc.
- GRINTA will detect a very large sample (~500/year) of long GRBs to provide deeper insights into the progenitors, central engines and jet structures associated with massive stellar collapses.
- It will provide broad band coverage to study accretion and ejection phenomena in compact sources, covering an important gap in the decade
- It will work in synergy with other ground and space facilities, spanning from radio to UHE gamma-rays to study the most energetic phenomena