

Development of X-ray Optics onboard the enhanced X-ray Timing and Polarimetry (eXTP) mission

Yanji Yang on behalf of eXTP Opitcs Team 5th. Dec. 2023

AXRO2023, Prague, 04-08, Dec, 2023

eXTP: enhanced X-ray Timing and Polarimetry

Important Sciences

- Extreme density, gravity, magnetism
- > Neutron stars, black holes, etc

Cutting-edge technology

- > Spectral, polarization, timing, imaging
- Large eff. Area (~3.4 m²@6 keV)
- High spec. resol.(<180 eV@6 keV)</p>
- High throughput: 15 Crab up to 8 hours

Payload	Configuration	Eff. area (m ²)	Timing res. (μs)
Spectroscopy Focusing Array (SFA)	9 telescopes	0.6 m²@1-2 keV	10
Large Area Detector (LAD)	40 modules	3.0 m²@8 keV	10
Polarimetry Focusing Array (PFA)	4 telescopes	300 cm²@3 keV	10
Wide Field Monitor (WFM)	6 cameras	3.1 Sr (FOV)	10

Consolidated in Phase B

eXTP International Consortium (with hardware contribution)

Supported through *eXTP Major Background Study project* by CAS, with contributions supported by ASI and other Eur. member states.

- 2019.02 The 2nd eXTP Consortium meeting & Phase B technical kick-off in Beijing.
- 2022.01 Satellite/Chinese payloads conceptual design review.
- 2022.06 Selection for the China Space Science Plan (SPP-3).
 - Organized by CAS with support of a international review team.
 - eXTP is highly recommended with perspective adoption around the end of 2023.
- 2023.03 eXTP Major Background Study project under evaluation
 - Technical part successfully completed.
 - Budget/programmatic part completed.
- 2023.04 LAD and WFM instruments completed Phase B1 study and I-SRR.

Phase B progress in Europe

STATUS OF LAD & WFM DEVELOPMENT

The LAD and WFM instruments have recently completed their Phase B1 study. The Instrument System Requirements Review (I-SRR) was successfully closed in April 2023.

- □ The I-SRR Review Panel was composed by 4 international scientists and 3 ESA engineers. The review was organized and coordinated by the Italian Space Agency and a delegation of Spain.
- The technical status of the LAD and WFM was assessed as excellent and in line with the current status of the program. A number of RIDs identified actions to the Team, aimed at a technically improvement the program and are considered as normal work.

eXTP Mission Overview

Parameter	Value
Orbit	550 km, inclination ~ 0°
Pointing	3-axis stabilized, < 0.01 $^{\circ}$ (3 σ)
Launch	LM-5, from Wenchang (19°N)
Launch mass	~5300 kg
Telemetry	1.6 Tb/day (X-band)
Burst alert & real-time control	BeiDou Short Message, 30s to SOC (Up/down link: 400/500 bps) ; VHF transmitter (SVOM, TBC);
Ground Stations	Colombo (China), Malindi (Italy)
Mission duration	5 years (goal 8 years)
Launch date	~ 2029

Preliminary Design of eXTP Optics

Requirement of eXTP Optics

	SFA	PFA		
Number of Mirror Modules	9	4	1200	
Focal length	5.25 m		1000	
Envelope	≤600 mm (Diameter)		5	<u>Reg@2keV+10%</u>
Collecting area on axis	≥820 cm² @ 2 keV <mark>≥800 cm² @ 3 keV</mark> ≥550 cm² @ 6 keV		008 Em	Reg@6keV+10%
Energy range	0.5~10 keV		400 Au+C40 Au+C40	
Field of View	>12'		200 Au+C100	
Angular resolution (HPD)	<30" (15")		0	
Mass budget	≤130 kg fo	or 1 spider	0 1 2 3 4	5 6 7 8 9 10 11 12 Energy [keV]
Working temperature	20±	1 °C		

Updated Dec. 2023

Milestones for eXTP Optics

• The DM4 with nickel coating only will be finished to test with the PFA camera in ?.

• The first eXTP mirror shell with 1 mm thickness has been

- 1000m² clean room located at south of Harbin City with:
- Diamond turning machine
- Dedicated metrology room & instruments
- Polishing (super polishing & figuring)
- Gold coating chamber
- Electro-forming bath
- Mirror separation stand & mandrel storage room
- Mirror inspection & integration

Layout of the mirror production facilities

Electroformed Nickel Replication (ENR) fabrication process is adopted: nickel mirror shells are electroformed onto a figured and superpolished aluminum mandrel. Later mirror shells are released from the mandrel using differential thermal contraction.

Manufacturing processes of eXTP mirrors

1. Aluminum blank turned into rough shape

2. Electro-less NiP plating of 150um thick

3. Ultra-precision diamond turning to get exact mandrel shape with error corrections

4. Super-polished to surface toughness ~0.5nm

5. 150nm thick gold coating

6. Nickel electroforming (0.2~0.5mm) 7. Mirror shell separated from the mandrel

 eXTP Demonstrator 2 consist of 4 X-ray Wolter I mirror shells, 1#, 20# and 21#, and 41 dummy shells, which angular resolution meets the requirement of SFA.

• eXTP Demonstrator 3 is manufactured by Media Lario, which consist of 3 X-ray mirror shells, 1#, 21# and 22#.

- eXTP mirror shells have the smallest t/R ratio, which is 1.75×10^{-3} .
- eXTP 1# shell is the biggest one, which entrance diameter is 480mm, and the thickness is only 0.41mm. It is easy to deform.

- eXTP Focusing mirror has the smallest t/R ratio, which is 1.75×10^{-3} .
- eXTP 1# shell is the biggest one, which entrance diameter is 480mm, and the thickness is only 0.41mm. It is easy to deform.

 eXTP mirror shell 21st has been manufactured with gold free, which angular resolution meets the requirement of PFA.

Mirror Shell with dual coating layers

- The mirror shell adopts 6nm Ni and Au 100nm, which increase the effective area from 3keV to 6keV (PFA).
- The angular resolution is 17.3 arcsecs. AI-k2311241700-AI-AI-7kV-200uA_0001.fits2

200

Row[Pixel] 120

50

50

- A small mission for all-sky monitoring to discover and study high-energy transients and variability in the soft X-ray band.
- Proposed in 2012, and managed in the Space Science Programme of the CAS.
- * FXT is one of the payloads onboard the EP mission.

Designed characteristics of FXT

<u>`</u>	
	goal
FOV	1°×1°
EA	≥600cm ² @1.25 keV, on axis
angular resolution	≤30″; HPD
Energy resolution	FWHM ≤120 eV@1.25 keV (Mg-K)
Energy range	0.3-10.0 keV
Source location error	<4" (1 σ; detector coordinate)

Complete the calibration of MA in 2022

> ESA FM and eROSITA FS MA calibration

Angular resolution and effective area are basically consistent with those measured in MPE

Effective Area

Energy keV	Effective Area cm ²
С-К:0.28	391.3 ± 7.6
Cu-L:0.93	356.8±5.6
Al-K:1.49	363.3±1.9
Ti-K:4.51	67.6±0.4
Cr-K:5.4	52.3±0.4
Cu-K:8.04	20.4±0.2

0 ⁻¹	Energy	Effective Area
	keV	cm ²
0 ⁻²	С-К:0.28	406.4±4.5
	Cu-L:0.93	375.0±3.6
0 ⁻³	Al-K:1.49	373.0±4.7
	Ti-K:4.51	77.6±1.4
	Cu-K:8.04	22.6±1.1

¼象限的PSF

Development of EP-FXT Mirror Assembly Flight Spare

 Finish the development of the flight spare of the EP-FXT mirror assembly, which angular resolution is 45 arcsecs by 470nm parallel lights, and remains unchanged after the assembly with the X-ray baffle.

中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS

Thanks for your attention