Data processing for all-sky monitoring based on Lobster-eye optics

Ondřej Nentvich

Czech Technical University in Prague Faculty of Electrical Engineering

December 5, 2023

Funded by the Horizon 2020 Framework Program of the European Union Grant Agreement No. 871158

Outline

Outline

• Capture fast transients such as supernovae, gamma-ray bursts, etc.

NASA/CXC/MIT/UMass Amherst/M.D.Stage et al.

- Capture fast transients such as supernovae, gamma-ray bursts, etc.
- Create a wide field (all-sky) monitor for the X-ray spectrum

NASA/CXC/MIT/UMass Amherst/M.D.Stage et al.

- Capture fast transients such as supernovae, gamma-ray bursts, etc.
- Create a wide field (all-sky) monitor for the X-ray spectrum
- Poor ability to detect fast X-ray transients on Earth

- Capture fast transients such as supernovae, gamma-ray bursts, etc.
- Create a wide field (all-sky) monitor for the X-ray spectrum
- Poor ability to detect fast X-ray transients on Earth
- Monitor placed on a satellite and send echo to more precise telescope

M. Urban, O. Nentvich, et al. "VZLUSAT-1: Nanosatellite with miniature lobster eye X-ray telescope and qualification of the radiation shielding composite for space application". In: *Acta Astronautica* 140 (Nov. 2017), pp. 96–104. ISSN: 00945765. DOI: 10.1016/j.actaastro.2017.08.004

- Capture fast transients such as supernovae, gamma-ray bursts, etc.
- Create a wide field (all-sky) monitor for the X-ray spectrum
- Poor ability to detect fast X-ray transients on Earth
- Monitor placed on a satellite and send echo to more precise telescope
- Intended for use on small CubeSats such as VZLUSAT-1 with miniaturised lobster-eye optics.

M. Urban, O. Nentvich, et al. "VZLUSAT-1: Nanosatellite with miniature lobster eye X-ray telescope and qualification of the radiation shielding composite for space application". In: *Acta Astronautica* 140 (Nov. 2017), pp. 96–104. ISSN: 00945765. DOI: 10.1016/j.actaastro.2017.08.004

Outline

PyXLA: Python X-ray-tracing for Lobster-eye Application

• Software for simulating a Lobster-Eye optics

O. Nentvich, M. Urban, and R. Hudec. "PyXLA: Python X-ray-tracing for Lobster-Eye application". In: Journal of Optics (Mar. 2023). ISSN: 2040-8978. DOI: 10.1088/2040-8986/acc2cc

PyXLA: Python X-ray-tracing for Lobster-eye Application

• Software for simulating a Lobster-Eye optics

• Written in Python

O. Nentvich, M. Urban, and R. Hudec. "PyXLA: Python X-ray-tracing for Lobster-Eye application". In: Journal of Optics (Mar. 2023). ISSN: 2040-8978. DOI: 10.1088/2040-8986/acc2cc

• Software for simulating a Lobster-Eye optics

• Written in Python

• Can be used as a library or as a standalone application

O. Nentvich, M. Urban, and R. Hudec. "PyXLA: Python X-ray-tracing for Lobster-Eye application". In: Journal of Optics (Mar. 2023). ISSN: 2040-8978. DOI: 10.1088/2040-8986/acc2cc

• Mirror stack creation

PyXLA: Steps

• Mirror stack creation

• Detector selection

PyXLA: Steps

• Mirror stack creation

• Detector selection

• Ray-tracing - Application execution

• Number of mirrors

- Number of mirrors
- Thickness, width, length and spacing

- Number of mirrors
- Thickness, width, length and spacing
- Focal length

- Number of mirrors
- Thickness, width, length and spacing
- Focal length
- Grazing angle of incidence can be specified as a data file or a fixed value for any angle (e.g. from CXRO library)

- Number of mirrors
- Thickness, width, length and spacing
- Focal length
- Grazing angle of incidence can be specified as a data file or a fixed value for any angle (e.g. from CXRO library)
- Spatial position of the entire mirror stack according to application requirements

• Custom chip resolution from 1x1 pixel

- Custom chip resolution from 1x1 pixel
- Variable pixel pitch which can be rectangular or square

- Custom chip resolution from 1x1 pixel
- Variable pixel pitch which can be rectangular or square
- Variable detector position

- Custom chip resolution from 1x1 pixel
- Variable pixel pitch which can be rectangular or square
- Variable detector position
- Predefined Timepix chips

• Ray tracing principle

- Ray tracing principle
- Source is treated as an array of rays with defined spacing

- Ray tracing principle
- Source is treated as an array of rays with defined spacing
- The recommended ray spacing is with respect to the detector pixel pitch

- Ray tracing principle
- Source is treated as an array of rays with defined spacing
- The recommended ray spacing is with respect to the detector pixel pitch
- Source/s can be placed in 3D space to simulate real constellation

• REX – Rocket EXperiment

- REX Rocket EXperiment
- 1D Lobster-eye optics $(150 \text{ mm} \times 75 \text{ mm} \times 0.35 \text{ mm})$

- $\bullet \ REX-Rocket \ EXperiment$
- 1D Lobster-eye optics $(150 \text{ mm} \times 75 \text{ mm} \times 0.35 \text{ mm})$
- $f = 1097 \,\mathrm{mm}, \,48 \,\mathrm{mirrors}$

- $\bullet \ REX-Rocket \ EXperiment$
- 1D Lobster-eye optics $(150 \text{ mm} \times 75 \text{ mm} \times 0.35 \text{ mm})$
- $f = 1097 \,\mathrm{mm}, \,48 \,\mathrm{mirrors}$
- Timepix detector $(256 \text{ px} \times 256 \text{ px})$

- REX Rocket EXperiment
- 1D Lobster-eye optics (150 mm× 75 mm× 0.35 mm)
- $f = 1097 \,\mathrm{mm}, \,48 \,\mathrm{mirrors}$
- Timepix detector $(256 \text{ px} \times 256 \text{ px})$
- Line Spread Function (LSF) for 1D optics

M. Urban, O. Nentvich, et al. "REX: X-ray experiment on the water recovery rocket". In: Acta Astronautica 184 (July 2021), pp. 1–10. ISSN: 00945765. DOI: 10.1016/j.actaastro.2021.03.019

- REX Rocket EXperiment
- 1D Lobster-eye optics $(150 \text{ mm} \times 75 \text{ mm} \times 0.35 \text{ mm})$
- $f = 1097 \,\mathrm{mm}, \,48 \,\mathrm{mirrors}$
- Timepix detector $(256 \text{ px} \times 256 \text{ px})$
- Line Spread Function (LSF) for 1D optics

- REX Rocket EXperiment
- 1D Lobster-eye optics (150 mm× 75 mm× 0.35 mm)
- $f = 1097 \,\mathrm{mm}, \,48 \,\mathrm{mirrors}$
- Timepix detector $(256 \text{ px} \times 256 \text{ px})$
- Line Spread Function (LSF) for 1D optics
- PSF for 2D Schmidt optics

M. Urban, O. Nentvich, et al. "REX: X-ray experiment on the water recovery rocket". In: Acta Astronautica 184 (July 2021), pp. 1–10. ISSN: 00945765. DOI: 10.1016/j.actaastro.2021.03.019

- REX Rocket EXperiment
- 1D Lobster-eye optics $(150 \text{ mm} \times 75 \text{ mm} \times 0.35 \text{ mm})$
- $f = 1097 \,\mathrm{mm}, \,48 \,\mathrm{mirrors}$
- Timepix detector $(256 \text{ px} \times 256 \text{ px})$
- Line Spread Function (LSF) for 1D optics
- PSF for 2D Schmidt optics

M. Urban, O. Nentvich, et al. "REX: X-ray experiment on the water recovery rocket". In: Acta Astronautica 184 (July 2021), pp. 1–10. ISSN: 00945765. DOI: 10.1016/j.actaastro.2021.03.019
• Ability to simulate a Lobster-Eye optics with a rectangular detector

- Ability to simulate a Lobster-Eye optics with a rectangular detector
- Possible to add a coded mask

- Ability to simulate a Lobster-Eye optics with a rectangular detector
- Possible to add a coded mask
- Ability to simulate several sources with different intensity

- Ability to simulate a Lobster-Eye optics with a rectangular detector
- Possible to add a coded mask
- Ability to simulate several sources with different intensity
- A system with more than one detector must be simulated separately

Outline

Point Source Localisation: Idea

• Localisation of point sources directly on-board of a Cubesat

O. Nentvich, M. Urban, et al. "Lobster eye X-ray optics: Data processing from two 1D modules". In: Contributions of the Astronomical Observatory Skalnaté Pleso 47 (2 2017), pp. 178–183

Point Source Localisation: Idea

- Localisation of point sources directly on-board of a Cubesat
- Using two independent 1D Lobster-Eye optics and two detectors

O. Nentvich, M. Urban, et al. "Lobster eye X-ray optics: Data processing from two 1D modules". In: Contributions of the Astronomical Observatory Skalnaté Pleso 47 (2 2017), pp. 178-183

Point Source Localisation: Idea

- Localisation of point sources directly on-board of a Cubesat
- Using two independent 1D Lobster-Eye optics and two detectors
- Post-processing of the two images

O. Nentvich, M. Urban, et al. "Lobster eye X-ray optics: Data processing from two 1D modules". In: Contributions of the Astronomical Observatory Skalnaté Pleso 47 (2 2017), pp. 178–183

• Images from two independent 1D Lobster-Eye optics

- Images from two independent 1D Lobster-Eye optics
- Coded mask for more precise point source localisation

- Images from two independent 1D Lobster-Eye optics
- Coded mask for more precise point source localisation
- Deconvolved input images with PSF for each image

- Images from two independent 1D Lobster-Eye optics
- Coded mask for more precise point source localisation
- Deconvolved input images with PSF for each image $\rightarrow {\bf H}, {\bf V}$

Point Source Localisation: Data-Processing - First Approach

- Images from two independent 1D Lobster-Eye optics
- Coded mask for more precise point source localisation
- Deconvolved input images with PSF for each image \rightarrow **H**, **V**
- Matrix multiplication of both images to get the potential point sources (I)

Potential position $\mathbf{I} = \mathbf{H} \times \mathbf{V}$

Point Source Localisation: Data-Processing - First Approach

- Images from two independent 1D Lobster-Eye optics
- Coded mask for more precise point source localisation
- Deconvolved input images with PSF for each image \rightarrow **H**, **V**
- Matrix multiplication of both images to get the potential point sources (I)
- Create a binary mask (**B**)

Potential position

 $\mathbf{I}=\mathbf{H}\times\mathbf{V}$

Binary mask creation		
$\mathbf{A} = \mathbf{H} \cdot \mathbf{V}$		
$\mathbf{B}(x,y) = \int 0,$	if $\mathbf{A}(x,y) > T$	
$\mathbf{D}(x,y) = \Big\{ 1,$	otherwise	

Point Source Localisation: Data-Processing - First Approach

- Images from two independent 1D Lobster-Eye optics
- Coded mask for more precise point source localisation
- Deconvolved input images with PSF for each image \rightarrow **H**, **V**
- Matrix multiplication of both images to get the potential point sources (I)
- Create a binary mask (\mathbf{B})
- \bullet Resulting image $({\bf R})$

Potential position

 $\mathbf{I}=\mathbf{H}\times\mathbf{V}$

Binary mask creation		
$\mathbf{A} = \mathbf{H} \cdot \mathbf{V}$		
$\mathbf{B}(x,y) = \int 0,$	if $\mathbf{A}(x,y) > T$	
$\mathbf{D}(x,y) = \Big\{ 1,$	otherwise	

Resulting image	
$\mathbf{R} = \mathbf{I} \cdot \mathbf{B}$	

Point Source Localisation: Issues

• Trivial for one point source in FOV

Point Source Localisation: Issues

- Trivial for one point source in FOV
- Difficult for multiple sources after matrix multiplication

- Trivial for one point source in FOV
- Difficult for multiple sources after matrix multiplication
- Real and virtual sources in the potential source image (I)

Point Source Localisation: Issues

- Trivial for one point source in FOV
- Difficult for multiple sources after matrix multiplication
- Real and virtual sources in the potential source image (I)
- Necessary to improve the algorithm

• Line focus gives H/V direction

- Line focus gives H/V direction
- Gap created by a coded mask gives the V/H direction

- Line focus gives H/V direction
- Gap created by a coded mask gives the V/H direction
- Sum all columns in images and find local maxima line focus

- Line focus gives H/V direction
- Gap created by a coded mask gives the V/H direction
- Sum all columns in images and find local maxima line focus
- Moving averages for a low photon count

- Line focus gives H/V direction
- Gap created by a coded mask gives the V/H direction
- Sum all columns in images and find local maxima line focus
- Moving averages for a low photon count
- Search for local minima in the gaps

- Line focus gives H/V direction
- Gap created by a coded mask gives the V/H direction
- Sum all columns in images and find local maxima line focus
- Moving averages for a low photon count
- Search for local minima in the gaps
- Find all possible locations of point sources

- $\bullet\,$ Line focus gives H/V direction
- Gap created by a coded mask gives the V/H direction
- Sum all columns in images and find local maxima line focus
- Moving averages for a low photon count
- Search for local minima in the gaps
- Find all possible locations of point sources

O. Nentvich, M. Urban, et al. "Lobster eye optics: Position determination based on 1D optics with simple code mask". In: vol. 11108. 2019. ISBN: 9781510629097. DOI: 10.1117/12.2528505

- Line focus gives H/V direction
- Gap created by a coded mask gives the V/H direction
- Sum all columns in images and find local maxima line focus
- Moving averages for a low photon count
- Search for local minima in the gaps
- Find all possible locations of point sources
- Is one image enough?

- $\bullet\,$ Line focus gives H/V direction
- Gap created by a coded mask gives the V/H direction
- Sum all columns in images and find local maxima line focus
- Moving averages for a low photon count
- Search for local minima in the gaps
- Find all possible locations of point sources
- Is one image enough?
- Not for precise determination

Outline

• Presented two topics which I have been worked on

- Presented two topics which I have been worked on
- PyXLA simulation software for Lobster-Eye optics

Conclusion

- Presented two topics which I have been worked on
- PyXLA simulation software for Lobster-Eye optics
- Processing the images from two independent Lobster-Eye optics

Conclusion

- Presented two topics which I have been worked on
- PyXLA simulation software for Lobster-Eye optics
- Processing the images from two independent Lobster-Eye optics
- Point source localisation by using two algorithm

Thank you for your attention

QUESTIONS?

Outline

• Uniform Source

• approx. 50 000 photons

 \bullet approx. 10 000 photons

• approx. 5000 photons

• approx. 1000 photons

