Early Results from the Characterization of JET-X, Polished Silicon Optics and an Off-Plane Reflection Grating at the PANTER X-ray Test Facility

Alexandra Higley Pennsylvania State University

14th international workshop on astronomical x-ray optics – December 6, 2023

Thanks to:

Penn State: Randall McEntaffer, Bridget O'meara, James Tutt, Jake McCoy

University of Iowa: Casey Deroo

PANTER: Vadim Burwitz, Gisela Hartner, Thomas Schmidt, Andreas Langmeier, Thomas Müller, Bernd Budau, Andreas Langmeier, Suri Rukdee, Stefan Passlack, entire PANTER team

The Open University: Andrew Holland, Daniel Evan

XCAM: Karen Holland, David Colebrook, David Gopinath

The Campaign

- Six week characterization campaign that took place over the October and November of this year at the PANTER X-ray test facility in Neuried, Germany
- Confirm that both the OGRE and the "Pathfinder OGRE" spectrometers meet performance requirements
 - R > 1500 across entire soft x-ray bandpass (~10 55 Å) and goal of R > 2000 at select energies (Donovan et al 2019)
- "Pathfinder OGRE" will use the JET-X optic (Joint European Telescope for X-ray astronomy) to replace the Monocrystalline silicon optics that will be flown on OGRE
- Source used for the duration of the campaign was AI-Kα (1.49 keV)

- Performance test of JET-X
- Comparing to calibration done in 1996 and 2012 test

JET-X

Detector

• Illuminated a 30 degree subannulus of the 2nd shell of JET-X

- Swapped JET-X with a two-shell sub-annulus of polished silicon optics (PSOs)
- Frown configuration

- Swapped JET-X with a two-shell sub-annulus of polished silicon optics
- Frown configuration

• Moved grating back to characterize it with PSO

• Added XCAM+OU EM-CCD to test entire OGRE spectrometer

• In late November, PSO was also tested in smile and side configuration

PSO

Detector

• In late November, PSO was also tested in smile and side configuration

The JET-X Optic

- Joint European Telescope for X-ray astronomy
 - Developed by the Italian Space Agency (ASI) in 1994 for the Spectrum-X-γ Space Observatory
 - Second flight module
 - It was tested in 2012 (also at PANTER) to determine its performance after 16 years of storage

Performance of the JET-X Optic

- Same focal length as monocrystalline silicon optics/ polished silicon optics (PSOs)
- Worse angular resolution than (~15" vs ~3") than PSOs
- But more effective area

Performance of the JET-X Optic

0.0071 0.021 0.05 0.11 0.22 0.44 0.89 1.8 3.6

0.0051 0.015 0.035 0.076 0.16 0.32 0.64 1.3 2.6

0.0041 0.029 0.13 0.51 2.1

Fe-K

0.0055 0.017 0.039 0.083 0.17 0.35 0.7 1.4 2.8

0.0055 0.038 0.17 0.69 2.8

0.0042 0.012 0.029 0.063 0.13 0.26 0.53 1.1 2.1

Angular Resolution of JET-X

Year	Detector	C-K 0.28 keV	Co-L 0.78 keV	Mg-K 1.25 keV	AI-K 1.49 keV	Ag-L 2.98 keV	Ti-L 4.51 keV	Fe-K 6.40 keV	Cu-K 8.05 keV
1996 HEW (arcsec)	MOS				14.6				18.8
2012 HEW (arcsec)	TRoPIC				15.7 ± 0.4	16.8 ± 0.4	18.0 ± 0.6	20.4 ± 0.9	20.8 ± 0.7
2023 HEW (arcsec)	TRoPIC	13.9 ± 0.5	14.7 ± 0.8	14.5 ± 0.6	15.4 ± 0.8	16.2 ± 0.6	17.1 ± 0.8	18.6 ± 0.8	20.4 ± 1.0
	PIXI	13.9 ± 0.5		14.8 ± 0.3	14.6 ± 0.3		16.6 ± 0.8		

Consistent with previous measurements

1996 & 2012 values taken from Spiga et al (2014) 2023 values taken with the help of the PANTER team

13

Effective Area of JET-X

Provided by the PANTER team; Using values from Spiga et al (2014) **14**

Effective Area of JET-X

Provided by the PANTER team; Using values from Spiga et al (2013) **15**

Telescope side

Penn State X-ray Grating

- Blazed reflection gratings
- Aberration-correcting with a radial profile
- Mounted in the Off-plane
 Yaw = 0.98
- Blaze is 33° putting efficiency into 13th order when in Littrow

16

Figure adapted from O'Meara

OPG (Off-plane Grating) Installation

TRoPIC and PIXI

Alignment

- Illuminated a 30 degree subaperature of the second shell of JET-X
- Aligned grating mask by finding optimal intensity
- Focus search
- Pitch scan
- Z-Scan
- Yaw-scan
- "Fine yaw" scan
- Did not align in roll because the image did not appear to have roll misalignment; for the sake of time

Alignment: Z-scan

Alignment: Yaw scan

Why won't you diffract?

Why won't you diffract?

Fitted radius: 93.63 mm Predicted radius: 93.84 mm

Provided by the PANTER team

30

Switching to Polished Silicon Optic (PSO)

- Same alignment process
- Focus ~20 mm off from what was expected: needed to open the chamber again
- Had a pitch misalignment and we were seeing a smile image

Added XCAM detector

- "OGREcam" EM-CCD with 16 micron pixels
- Encoders emitting in infrared and banding

Added XCAM detector

Spectral Resolution *Rough* Estimate

PIXI: 20 micron pixels; dispersion distance: 103.22 mm

JET-X + OPG

Gaussian FWHM: 1.39 pixels (27.8 microns) R $(x/\Delta x) \approx$ 3712.9

PSO + OPG

Gaussian FWHM: 1.39 pixels (27.8 microns) R $(x/\Delta x) \approx$ **3712.9**

Spectral Resolution *Rough* Estimate

OGREcam: 16 micron pixels; dispersion distance: 103.22 mm

PSO + OPG + XCAM

Gaussian FWHM: 1.48 pixels (23.68 microns) R $(x/\Delta x) \approx$ **4359.0**

Conclusion and Future work

- Rough, preliminary estimates of spectral resolving power indicate that OGRE spectrometers using both JET-X or PSOs meet performance requirements
- Lots of data lots of future work
- TRoPIC data (larger pixels but has event counting)
- Fit a convolution of lorentzians and gaussians to 0th order profile
- Use compare 0th order and 13th order profiles to asses grating aberrations
- Still working to understand performance of the double shell PSO in the three configurations it was tested in.

Thank you for your attention!

Thanks to the entire PANTER team for everything — helping with the campaign, teaching me so much and also hosting me for six weeks

Thanks to XCAM + The Open University

Thanks to the rest of the McEntaffer group