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How the computation algorithm is made
Ray-tracing
◮ General usage
◮ Necessity of tracing of plenty of rays, therefore the calculation

takes a long time.

Commonly, what is general, it is complex. Sometimes, the better
way is to use simple model, simple equations, simple and fast code
optimised for a given problem.
The aprogram is inteded for lobster eye and similar systems, e.g.
Kirkpatrick-Baez that are composed of two orthogonal stack of
mirrors.

Basic ideas how to optimize it for multi foil systems, particularly
lobster eye:
◮ Separation of dimensions: 3D problem → two 2D problems

that represents a small approximation
◮ Calculation of borders of reflections and shadows only that

does not represent an approximation for flat mirrors.
◮ Usage of suited formalism makes the equation even simpler.



Separation of dimensions

(a) First (horizontal) subsystem (b) Second (vertical) system

(c) Full 2D system

Figure: Separation of 2D system into two 1D systems



Look at one stack of mirrors

One stack of mirrors can be studied in the plane intersecting the
system. In the optical system, some rays are reflected to the focus
and other rays come through the system directly



Used mathematical formalism

The fact, that the real two-dimensional space (plane) is isomorphic
with the set of the complex numbers is utilized. So, the operations
known of the complex numbers are used in an analogous manner
to two-dimensional vectors. We got these operations:

Operation Symbol Definition

addition a+ b (a1 + b1, a2 + b2)
subtraction a− b (a1 − b1, a2 − b2)
complex product ab (a1b1 − a2b2, a1b2 + a2b1)

complex division a

b

1
|b|2

(a1b1 + a2b2, a2b1 − a1b2)

absolute value, norm |a|
√

a12 + a22

complex conjugation a∗ (a1,−a2)
2-D vector inner product a · b a1b1 + a2b2
2-D vector exterior product a× b a1b2 − a2b1
Any other types of mathematical operations are not necessary.



Notation

◮ Common two-dimensional Cartesian coordinate system is used.

◮ Vectors are labeled by bold letters, e.g. a.

◮ Coordinates are listed in round brackets and marked by
subscript indices, e.g. (a1, a2).

◮ Common vector operations including the inner (dot) product
and 2-D exterior (cross) products (whereof results are real
numbers) are used.

◮ Indices that enumerate different vectors are written by
superscript and marked by round brackets, e.g. u(1), u(2).



Direct rays
It is useful to begin the calculations by calculating the position of
the shades of mirrors. The mirror can have non-zero thickness and
its border is defined by points M(1), M(2), M(3), M(4).

(a) Parallel beams (b) Divergent beams

Equation for position of points F (j) is simple:

F
(j)
2 = M

(j)
2 −M

(j)
1

u
(j)
2

u
(j)
1

(1)

The shadow lays between the minimal and maximal value of F (j),
j = 1 . . . 4.



Reflected rays

(c) Parallel beams (d) Divergent beams

Direction of the reflected ray is calculated by equation

r
(j) = mm

(

u
(j)
)∗

(2)

Positions of the borders of the reflection are calculated by equation

E
(j)
2 = M

(j+2s)
2 −M

(j+2s)
1

r
(j)
2

r
(j)
1

(3)

Mirror direction vector m is defined as
m = M(2) −M(1)/|M(2) −M(1)| or
m = M(4) −M(3)/|M(4) −M(3)|.



Shadows between mirrors

In dependence on the optics design and the incoming rays direction, some
mirrors can be completely or partially shaded by adjacent mirror.

(e) Parallel beams (f) Divergent beams

Figure: shadows between mirrors

In such case, in equations for calculations of positions of the reflections,
vertices of the mirror have to be replaced by the points bordering the
effective area. It is supposed that in the program, mirror data are
arranged and index of the mirror on the reflecting side can be calculated
e.g. l = k + 2s − 1,



Shadows between mirrors - parallel beams

The point M
(k,1+2s)

representing one of borders of active area of
the mirror is given as an intersection of two lines x(1), x(2) of
parametric equations

x
(1) = M

(k,1+2s) + αm (4)

x
(2) = M

(l ,4−2s) + βu(1) (5)

Real parameters α, β defining the position of the intersection can
by easily found as solution of a matrix system

(

m1 −u
(1)
1

m2 −u
(1)
2

)

(

α
β

)

=

(

M
(l ,4−2s)
1 −M

(k,1+2s)
1

M
(l ,4−2s)
2 −M

(k,1+2s)
2

)

(6)



Shadows between mirrors - parallel beams
Determinants of this system are

D = u
(1) ×m (7)

D1 = u
(1) ×

(

M
(l ,4−2s) −M

(k,1+2s)
)

(8)

D2 = m×
(

M
(l ,4−2s) −M

(k,1+2s)
)

(9)

Using the well known Cramer’s rule, the solution of Eqs. (4)-(5)
can be calculated as

α =
D1

D
; β =

D2

D
(10)

β < 0 including the case β = −∞ indicates reversed configuration.
α ≥ 1 (including the case α = +∞) indicates full shadows.
α ≤ 0 (including the case α = −∞) indicates no shadows.
If 0 < α < 1 then the mirror is partially shaded, point M(k,1+2s) is
replaced by point

M
(k,1+2s)

= M
(k,1+2s) + αm. (11)



Shadows between mirrors - parallel beams

A similar method is used to calculate the point M
(k,2+2s)

. The
corresponding determinants have equations

D = r
(2) ×m (12)

D1 = r
(2) ×

(

M
(l ,3−2s) −M

(k,1+2s)
)

(13)

D2 = m×
(

M
(l ,3−2s) −M

(k,1+2s)
)

(14)

α =
D1

D
; β =

D2

D
(15)

β > 0 indicates the opposite configuration. α ≤ 0 (including the
case α = −∞) indicates full shadows. α ≥ 1 (including the case
α = +∞) indicates no shadows. If 0 < α < 1 then the point
M(k,2+2s) is replaced by a point

M
(k,2+2s)

= M
(k,1+2s) + αm. (16)



Shadows between mirrors - divergent beams

Vectors u(2) and r(2) are calculated in a different way, because the

point M
(k,2+2s)

is not known at the beginning of the calculations.
Outcoming ray of direction vector r(2) comes from a virtual point
S′. The point S′ lays in axially symmetric position of the point S,
where the symmetry axis is defined by the mirror surface.

S
′ = M

(k,1+2s) +mm

(

S−M
(k,1+2s)

)

(17)

The vector r(2) is calculated via equation

r
(2) =

M(l ,3−2s) − S′

∣

∣M(l ,3−2s) − S′
∣

∣

(18)



LOPSIMUL - Overview



LOPSIMUL - Control panel



LOPSIMUL - Image



LOPSIMUL - Graphs



LOPSIMUL - Results

Channel analysis gives
◮ Min refl, Max refl = border position of all reflections.
◮ MM effective collecting length = effective collecting length[2]

related to the area bordered by Min rel and Max refl, i.e. by
border rays that are reflected.

◮ MM width = width of focal image bordered by Min refl and
max refl. It is not exactly equal to difference of Min refl and
Max refl because of non-zero pixel size.

◮ FWHM = halfwidth of focal image.



LOPSIMUL - Results

The analysis of full 2-D image gives:

◮ MM spot integral = sum of intensities of all pixels laying
within area bordered by Min refl and Max refl. I. e. it is total
intensity in a rectangulare box bordered by all double-reflected
rays.

◮ Peak position in pixel coordinates.

◮ Peak position in milimeters related to global coodinate system.

◮ Intesity of the peak.

For areas defined by FWHM and 10% rule, it is also calculated:

◮ Size of the area in pixels and square milimeters.

◮ Spot integral = sum of intensities of all pixels laying within
this area.

◮ Gain



Where LOPSIMUL can be obtained?

◮ Downloaded at www.lopsimul.eu

How much does it cost?

◮ Usage of LOPSIMUL is free of charge.

There is an ask, anyway:

◮ If results obtained by LOPSIMUL are published anywhere (e.g.
in article, paper, thesis, report, etc.), users are asked to
mention there that this program was used and that the
program uses simplified ray-tracing algorithm published in
Exp. Astron. (2016) 41:377-392; DOI
10.1007/s10686-016-9493-2. Include citation of this paper
and program homepage www.lopsimul.eu, please.
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