

13TH INTERNATIONAL WORKSHOP ON ASTRONOMICAL X-RAY OPTICS 5 - 9th December 2022 | Prague, Czech Republic

Laser plasma radiation source as a tool for testing X-ray and EUV astronomical optics

H. Fiedorowicz, A. Bartnik, T. Fok, M. Majszyk, M. Wardyńska, Ł. Węgrzyński, P. Wachulak

> Institute of Optoelectronics, Military University of Technology, Warsaw, Poland

Introduction

- testing astronomical X-ray and EUV optics,
- testing facilities and instruments.

• Laser plasma source of soft X-rays and EUV

- principle of the source operation,
- gas puff target approach,
- application of the source.

• Testing EUV and soft X-ray optics

- EUV multilayer mirrors,
- EUV grazing incidence mirrors,
- soft X-ray grazing incidence mirrors,
- EUV filters

• Summary and conclusions

Marshall's X-ray and Cryogenic Facility (XRCF)

The **X-ray and Cryogenic Facility** at NASA's Marshall Space Flight Center in Huntsville, Ala., is a unique, world class optical, cryogenic and X-ray test facility.

The X-ray and Cryogenic Facility consists of a 1,700-foot-long (518 m) X-ray guide tube, a horizontal cylindrical vacuum chamber and two clean rooms.

Laboratories and X-ray Test Facilities | Max Planck Institute for extraterrestrial Physics (mpg.de)

DEUTSCH Search

NEWS | INSTITUTE | SCIENCE | PUBLIC OUTREACH

Home > Science > High-Energy Astrophysics > Facilities

Personnel

News and Recent Results

Research

Projects

Facilities

Publications

Conferences/Workshops

Internal Pages

For Ph.D Students

Laboratories and X-ray Test Facilities

Two X-ray test facilities (PANTER and ② PUMA) are operated by the High-Energy Astrophysics group and provide an unique service to test X-ray equipment from all over the world. Components for almost all major X-ray satellites have been tested there. MPE was substantially involved in the development, testing and calibration of the X-ray telescopes and the EPIC-pn camera for XMM-Newton and the Low Energy Transmission Grating (LETG) for Chandra.

PANTER

PUMA

10e

Facility for testing modular X-ray optics in Italy

BEaTriX – testing facility for the modular X-ray optics of the ATHENA mission

Testing facilities at CSL, Belgium

Laser plasma source of EUV and soft X-rays

Schematic of a laser plasma source

Source characteristics:

- high single-pulse brightness
- short-pulse duration (ns)
- point-like shape
- easy tuning of wavelength
- low investment costs

Main disadvantages:

- laser target operation
- target debris production

Gas puff target

Schematic of a gas puff target

Solenoid valve

nozzle diaphragm coil gas reservoir

Power supply

Appl. Phys. Lett. 62 (1993) 2778

Soft x-ray shadowgraphy

Typical soft x-ray shadowgram

Gas density contours

Gas density spatial profiles

Institute of Laser Engineering, Osaka University, Japan

Opt. Communications 163 (1999) 103

Gas puff target limitations

□ self-absorption of EUV radiation in cold gas

EUV transmission in xenon

• Nd:YAG laser (Institute of Laser Engineering, Osaka, Japan)

Opt. Communications 184 (2000) 161

• EUV emission from various targets irradiated with a Nd:YAG laser (0.5J/10ns)

Compact laser plasma EUV source

Laser plasma soft X-ray source

Laser plasma EUV/soft X-ray sources based on a gas puff target

Testing EUV mirrors

Characterization Mo/Si multilayer mirrors

Collaboration with REFLEX s.r.o. Prague, Czech Republic

EUV mirror reflectivity angular dependence at 13.5nm

R. Rakowski et al., Optica Applicata 36 (2006) 593

Testing EUV mirrors

EUV ellipsoidal mirror with Mo/Si coating

Compact EUV microscope

0

200 400 600 800 1000 1200 1400 1600 1800

distance [nm]

48 nm spatial resolution

5µm

EUV microscopy based on a Fresnel optic

Testing EUV ellipsoidal Mo/Si mirror

22

Testing EUV ellipsoidal Mo/Si mirror

EUV beam control - mirror alignment

Testing EUV grazing incidence mirrors

Multi-foil grazing incidence EUV optic

Axisymmetrical ellipsoidal grazing incidence EUV mirror

Testing EUV multifoil optic

Testing EUV ellipsoidal grazing incidence mirror

26

EUV processing materials

Laser-plasma EUV source for processing materials

Modification polimer surface for biocompatibility control

PVF sample

Pristine

EUV modified

EUV

beam

Soft X-ray grazing incidence optics

Testing focusing soft X-ray optics

Arikkatt et al.Optics Express 30 (2022) 13940

Tandem of axisymmetrical paraboloidal grazing incidence soft X-ray mirrors

Testing EUV filters

EUV filters (Nb/Zr on Si₃N₄) transmitance measurements

Testing EUV filters for space mission

NASA IMAP Mission (2025) (The Interstellar Mapping and Acceleration Probe)

> Center for Space Research Polish Academy of Sciences

GLOWS (Global Solar Wind Structure)

Testing BP-Filter (MgF₂)

- synchrotron (PTB)
- RF source (SwRI)
- laser plasma (MUT)

- laser plasma EUV and soft X-ray sources based on a gas puff target have been introduced,
- characterization measurements of EUV and soft X-ray mirrors and EUV filers were performed,
- presented laser plasma sources may be also useful for testing astronomical optics (we believe).

Opto-Electronics Review - PAS Journals (pan.pl)

Opto-Electronics Review is peer-reviewed and quarterly published by the Polish Academy of Sciences (PAN) and the Association of Polish Electrical Engineers (SEP) in electronic version. It covers the whole field of theory, experimental techniques, and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. The scope of the published papers includes any aspect of scientific, technological, technical and industrial works concerning generation, transmission, transformation, detection and application of light and other forms of radiative energy whose quantum unit is photon. Papers covering novel topics extending the frontiers in optoelectronics or photonics are very encouraged. It has been established for the publication of high-quality original papers from the following fields:

- Optical Design and Applications,
- Image Processing
- Metamaterials,
- Optoelectronic Materials,
- Micro-Opto-Electro-Mechanical Systems,
- Infrared Physics and Technology,
- Modelling of Optoelectronic Devices, Semiconductor Lasers
- Technology and Fabrication of Optoelectronic Devices,
- Photonic Crystals,
- Laser Physics, Technology and Applications,
- Optical Sensors and Applications,
- Photovoltaics,
- Biomedical Optics and Photonics
- Space optics

Journal Metrics:

JCR Impact Factor 2021:	2.227
5 Year Impact Factor 2021:	2.038
SCImago Journal Rank (SJR) 2021:	0.438
Source Normalized Impact per Paper (SNIP) 2021:	0.971
CiteScore 2021:	5.0