An extended-source grating spectrograph for rockets and small satellites

Drew Miles

California Institute of Technology

08 December 2022

AXRO

Objective

- ♦ Supernova remnants
- ♦ Enhancements in the soft-X-ray background (SXRB)
- \diamond SXRB and galactic halo
- ♦ First with a sounding rocket instrument
 - ♦ Funded through 2022 for design and first launch (Cygnus Loop supernova remnant)
 - ♦ Proposing for more NASA funding for additional launches in 2024 and 2026
- ♦ Convert instrument to orbital format for new observations of the SXRB
 - $\Leftrightarrow \ R \approx 100$

The Rockets for Extended-source Xray Spectroscopy (tREXS)

- Soft X-ray grating spectrograph
 - First observation target: Cygnus Loop supernova remnant
 - $\Rightarrow \approx 10$ sq. deg. FOV
 - \Leftrightarrow Spectral resolving power $\approx 40 60$
 - ♦ Primary sensitivity from $\approx 0.3 - 0.8 \text{ keV} (\approx 15 - 40 \text{ Å})$
 - ♦ Optimized for O-VII, O-VIII, N-VI, and C-VI emission

tREXS

♦ Specifications:

- $\Rightarrow \approx 10$ sq. deg. FOV
- ♦ Primary sensitivity from $\approx 0.3 - 0.8 \text{ keV} (\approx 15 - 40 \text{ Å})$
- ♦ Optimized for O-VII, O-VIII, N-VI, and C-VI emission
- ♦ Instrument components:
 - Mechanical beam-shaper modules
 - ♦ X-ray reflection gratings
 - \diamond Focal plane camera

Image credit: James H. Tutt

Mechanical beam shapers (MBS)

- Passively sculpt incident light to produce 1D converging beam
- ♦ Allows for large FOV (>10 deg²) and \approx 2-3' LSF
- ♦ tREXS:
 - ♦ 700-mm long module
 - ♦ 45 plates/module
 - ♦ 2010-mm focal length

Mechanical beam shapers (MBS)

McEntaffer et al. (2007)

MBS Plates

MBS Plates

Slit width from $375 - 500 \mu m$; 241 slits/plate; 45 plates

Slit width from $375 - 500 \mu m$; 241 slits/plate; 45 plates

MBS alignment

MBS alignment

Blazed gratings – KOH etching

- Gratings provide wavelengthdependent dispersion to give spectral resolution
- * Shape grating groove to have specific facet angle δ
- Preferentially diffracts light to specific order & wavelength combination:
- $n\lambda = 2d \sin \delta \sin \gamma$ \Rightarrow tREXS $n\lambda \approx 88$ angstroms

Miles et al. (2018)

Blazed gratings – KOH etching

Optimize electron-beam lithography (EBL) exposure, etch temperature, etch duration to produce ideal facets:

Groove spacing $\approx 160 - 180 \text{ nm}$ Depth $\approx 70 - 90 \text{ nm}$

Image credit: Ross McCurdy

Grating replication

- Substrate-conformal imprint lithography (SCIL) by Philips SCIL Innovations
- One imprint from master grating can yield hundreds of replicas
- tREXS: 100 replicas each from two unique masters

McCoy et al. (2020)

How are we doing? Diffraction efficiency

Grating	Avg. Absolute Eff.	
Chandra (transmission)	$\lesssim 10\%^1$	
XMM-Newton (reflection)	$\approx 10 - 15\%^2$	
Lynx requirement	40% ³	
Arcus prototype	$pprox 60\%^{4*}$	
WRXR rocket	$\approx 65\%^5$	
tREXS rocket	≈50% ⊗	

*Up to 1.3 keV; insufficient access to higher energy

[1] Wargelin et al. (2004)
 [2] den Herder et al. (2000)
 [3] McEntaffer (2019)
 [4] Miles et al. (2018)
 [5] Miles et al. (2019)

tREXS Reflection gratings

- Reflection gratings fabricated with electron-beam lithography
- Variable line space, average period of 181 nm
- Each replica is coated (Ni), diced, and aligned into stacks of 38 for the flight

Image credits: Ross McCurdy

1. Laser dice fused silica spacers

2. Bond 3 spacers onto grating wafer

2. Bond 3 spacers onto grating wafer

2. Bond 3 spacers onto grating wafer

3. Bond grating wafer into grating stack

4. Integrate stack into module

X-ray detectors

Require:

- Large format: dispersed spectral orders are
 >350 mm in cross-dispersion extent
- ♦ Low noise: low count rate (≈count/s), need to minimize instrument background
- $\Delta E < 140 \text{ eV}$ across bandpass

Flight sensor:

- ♦ Teledyne/e2v CIS 113 CMOS
- $\approx \approx 31 \text{ mm x } 74 \text{ mm image area}$
- $\ensuremath{\approx} \approx 3 \ensuremath{\,\mathrm{e}}\xspace$ read noise, will be operated (LN2) at $\approx 190 K$

Calibration spectrum on one detector – Cr target

Instrument build

Middle: Diffraction gratings, foreward end of optics bulkhead. Right: Focal plane and readout electronics.

Metric	Current tREXS	Full tREXS	MBS-based SmallSat variant
Channels	2	4	90
Optic collecting area, per channel	175 cm ²	175 cm ²	27 cm ²
Optic grasp, per channel	63 cm ² deg ²	Same	$\sim 2.5 \text{ cm}^2 \text{ deg}^2$
Instrument grasp	$\sim 1.8 \text{ cm}^2 \text{ deg}^2$	$\sim 4.2 \text{ cm}^2 \text{ deg}^2$	$\sim 3.4 \text{ cm}^2 \text{ deg}^2$
FOV	$\sim 10.5 \text{ deg}^2$	Same	$\sim 7 \text{ deg}^2$
LSF quality	~2.4'	~2.8'	~1'
Focal length	2010 mm	Same	~940 mm
Spectral resolution	~50-80 (~1.3Å)	~40-70 (~1.5Å)	~100 (~0.9Å)
FP coverage	$\sim 250 \text{ cm}^2$	Same	?
Grating efficiency (avg)	~45%	~65%	~65%
Spectrograph dimensions	Conical, ~550-mm diameter, 3000-m length	Same	Cubic, ~1450 mm x 800 mm x 800 mm

Path to satellite:

- Redesign and fabricate new MBS plates – fabrication approach stays the same
 - Shorter FL, smaller slits, faster convergence
- New grating design – fabrication approach stays the same
 - ♦ Faster groove convergence
- Optimize alignment/focalplane layout

Backup Slides

tREXS

Specifications:

- $\Rightarrow \approx 10$ sq. deg. FOV
- ♦ Primary sensitivity from $\approx 0.3 0.8 \text{ keV} (\approx 15 40 \text{ Å})$
- ♦ Optimized for O-VII, O-VIII, N-VI, and C-VI emission
- ♦ Instrument components:
 - Mechanical beam-shaper modules
 - ♦ X-ray reflection gratings
 - ♦ Focal plane camera

Mechanical beam-shapers (MBS)

- Aperture channel that converges over a distance Z
- Acceptance angles from $\pm \theta$
 - Range of angles that can propagate through entire slit channel with some non-zero probability
- ♦ Aperture: 0.5 mm \rightarrow 0.375 mm
- ♦ Z = 700 mm
- $\otimes \theta \approx 2.15$ arcminutes

Ζ

FOV = 3.1 deg.

Central Axis 1

Ζ

Central Axis 2

Central Axis 3

Component	Parameter	Tolerance $(\pm 1\sigma)$	Driver
MBS Module	slit apertures	$15 \ \mu m$	throughput
	wire apertures	$12 \ \mu m$	throughput
	frame flatness	15 μ m peak-to-valley	throughput
	plate-to-plate x	$15 \ \mu m$	throughput
	plate-to-plate y	$250 \ \mu m$	throughput
	plate-to-plate z	$500 \ \mu m$	throughput
	plate-to-plate pitch	5 arcminutes	throughput
	plate-to-plate yaw	30 arcminutes	throughput
	plate-to-plate roll	30 arcseconds	throughput
	wafer flatness	20 μm peak-to-valley	resolving power
	edge roughness	$5 \ \mu m \ rms$	throughput
	grating-to-grating x	1 mm	throughput
C	grating-to-grating y	250 μm	throughput
Gratings	grating-to-grating z	$250 \ \mu m$	resolving power
	grating-to-grating pitch	1 arcminute	throughput
	grating-to-grating yaw	1 arcminute	throughput
	grating-to-grating roll	30 arcseconds	resolving power
	MBS-to-MBS x	100 µm	resolving power
	MBS-to-MBS z	$500 \ \mu m$	resolving power
	MBS-to-MBS pitch	30 arcminutes	resolving power
Instrument	MBS-to-MBS yaw	15 arcseconds	resolving power
	MBS-to-MBS roll	1 arcminute	resolving power
	MBS-to-gratings x	1 mm	throughput
	MBS-to-gratings y	$500 \ \mu m$	throughput
	MBS-to-gratings z	$425 \ \mu m$	resolving power
	MBS-to-gratings pitch	5 arcminutes	throughput
	MBS-to-gratings yaw	5 arcminutes	throughput
	MBS-to-gratings roll	1 arcminute	resolving power
	optics-to-focal plane \boldsymbol{x}	2 mm	throughput
	optics-to-focal plane \boldsymbol{z}	1 mm	resolving power
	optics-to-focal plane $pitch$	30 arcminutes	resolving power
	optics-to-focal plane yaw	20 arcminutes	resolving power
	optics-to-focal plane $roll$	20 arcminutes	resolving power